3^n-1/9^1-n=1

Simple and best practice solution for 3^n-1/9^1-n=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3^n-1/9^1-n=1 equation:



3^n-1/9^1-n=1
We move all terms to the left:
3^n-1/9^1-n-(1)=0
determiningTheFunctionDomain 3^n-n-1-1/9^1=0
We add all the numbers together, and all the variables
-1n+3^n-1-1/9^1=0
We multiply all the terms by the denominator
-1n*9^1+3^n*9^1-1-1*9^1=0
We add all the numbers together, and all the variables
-1n*9^1+3^n*9^1-10=0
Wy multiply elements
-9n^2+27n^2-10=0
We add all the numbers together, and all the variables
18n^2-10=0
a = 18; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·18·(-10)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*18}=\frac{0-12\sqrt{5}}{36} =-\frac{12\sqrt{5}}{36} =-\frac{\sqrt{5}}{3} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*18}=\frac{0+12\sqrt{5}}{36} =\frac{12\sqrt{5}}{36} =\frac{\sqrt{5}}{3} $

See similar equations:

| 3+3n=15+5n | | 5(2x+5)+x=69 | | x^2 +6x+3=0 | | 65=1.05^x | | -5y+8=3y+10= | | 3y=8y-110 | | 72-5b=3b | | (3x+6)+(4x-2)=180 | | x^2 +16x+28=0 | | x/360*π*x^=12.5 | | 18x+5-17x=-9 | | 5x2+25x=0. | | 11=a/7 | | 13+6c=29 | | 2x+5=2x–3 | | 8-2(x+12)=-4-11x | | (7h3+8h)−(9h3+h2−2h)=0 | | (−t3+5t2−6t)+(8t2−8t)=0 | | -25b=-2.5 | | b-23.46=66.19 | | 25=3a+0 | | x-0.2x=19 | | 5x+6x-9x=6+6 | | (2x+3)/5=x+6 | | 11/15-1/3=n | | -4.91x^2+20X+19=30 | | 5x+17=59 | | 2y-51=11 | | 17n=15 | | 17n=5 | | 2(d/3+6)=20 | | 6x+6=7x+5 |

Equations solver categories